Is it possible to Use an Infrared Sensor to Accurately Measure Temperature from a Distance ?

> Ishaan Patel Dacula Middle School

### **Prototype Components**

Arduino Uno Board - Open-source micro-controller board that can be used for small scale projects. Acts as the brain for this project.

IR Sensor – Measures the temperature within a range.

Ultrasonic Sensor – Contains two pins: Trig and Echo. Two pins work together to measure distance.

LED Screen – Displays the Temperature

Breadboard – Allows extra connections

Buzzer: Makes beeping noise to alert if a fever is found and is the **unique aspect**.



## **Prototype Assembly**

#### **Arduino Board Connections:**

- Connect the Arduino Board +5v Connection to Bread board.
- Connect the Arduino Board GND Connection to Bread board.

#### MLX 90614 Infra-Red (IR) Temperature Sensor Connections:

- Connect GND pin of MLX 90614 IR sensor's to -ve (negative) to Bread board.
- Connect VCC pin of MLX 90614 IR sensor's to +ve (Postive) to Bread board.
- Connect SCL pin of MLX 90614 IR sensor's to A4 pin connection of Arduino on Bread board.
- Connect SDA pin of MLX 90614 IR sensor's to A5 pin connection of Arduino on Bread board. Ultrasonic Sensor HC-SR04 Connections:
- The HC-SR04 Sensor's VCC connect to the Positive Connection +5V on Bread board.
- The HC-SR04 Sensor's GND connect to the GND Connection on Bread board.
- The HC-SR04 Sensor's Trig connect to the Arduino Board Analog I/O A12
- The HC-SR04 Sensor's Echo connect to the Arduino Board Analog I/O A13
- Connect LCD screen to your Arduino board.
- Connect GND pin to -ve (negative) to Bread board.
- Connect VCC pin to +ve (Postive) to Bread board.

#### **Buzzer Connections:**

- Connect +5V of buzzer to digital pin 11 of Arduino Uno.
- Connect GND buzzer pin to -ve (negative) to Bread board.

#### C Programming Code

| <pre>#include&lt; Adafruit_MLX90614.h&gt; //Include Adafruit MLX Driver Library</pre> | void setup()                                                      |  |  |  |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
| #include <liquidcrystal_i2c.h> //create LCD display Library</liquidcrystal_i2c.h>     | {    pinMode(trigPin, OUTPUT);                                    |  |  |  |
| // start of settings for LCD1602 with I2C for 16 chars and 2 line display             | pinMode(echoPin, INPUT);                                          |  |  |  |
| LiquidCrystal_I2C lcd(0x27, 16, 2);                                                   | pinMode(buzz, OUTPUT);                                            |  |  |  |
| // Define the MLX90614 sensor function from Library                                   | //Begin serial communication with Arduino IDE (Serial Monitor)    |  |  |  |
| Adafruit_MLX90614 mlx = Adafruit_MLX90614();                                          | Serial.begin(9600);                                               |  |  |  |
| float roomTemp; // ambient or room temperature                                        | //Initialize LCD I2C                                              |  |  |  |
| float objectTemp ; // object temperature                                              | lcd.init();                                                       |  |  |  |
| // buzzer connection to Arduino board                                                 | lcd.backlight();                                                  |  |  |  |
| int buzz = 11;                                                                        | //Initialize MLX90614                                             |  |  |  |
| // Ultrasonic Sensor preparation                                                      | mlx.begin();    }                                                 |  |  |  |
| #define echoPin 8 // Echo Pin                                                         |                                                                   |  |  |  |
| #define trigPin 9 // Trigger Pin                                                      | void play_alert() { // beep when object temperature is >= 99.6 °F |  |  |  |
| int maximumRange = 25; // Maximum range needed                                        | tone(buzz, 1000, 200);                                            |  |  |  |
| int minimumRange = 8; // Minimum range needed                                         | noTone(buzz);                                                     |  |  |  |
| long duration, distance; // Duration used to calculate distance                       | }                                                                 |  |  |  |

```
if ((distance >= minimumRange) && (distance <= maximumRange)){
void loop()
{ digitalWrite(trigPin, LOW);
                                                                              Icd.print("HOLD ON "); // Hold the Object same place for few seconds
 digitalWrite(trigPin, HIGH);
                                                                                disptemp(); // Call Temp Measurement Function
 digitalWrite(trigPin, LOW);
                                                                             } }
 duration = pulseIn(echoPin, HIGH);
                                                                             // Function to Measure and display the Object Temperature
 //Calculate the distance (in cm) based on the speed of sound.
                                                                             void disptemp()
 distance= duration*0.034/2;
                                                                                 objectTemp = mlx.readObjectTempF();
 // reading object and ambient temperature in degree Fahrenheit
                                                                                if (objectTemp >= 99.6) { // Check Temp, If Temp over 99.6 then
                                                                            Alert
 objectTemp = mlx.readObjectTempF();
                                                                                  play alert(); // Call function to Play Buzzer sound
 roomTemp = mlx.readAmbientTempF(); ;
 // display on OLED screen
                                                                                lcd.clear();
 lcd.setCursor(0, 0);
if (distance > maximumRange) {
                                                                                lcd.setCursor(0,0);
                                                                                lcd.print("Your Body Temp is:");
  lcd.print("GET CLOSER "); // Object is Far over 25 cm, bring object closer
                                                                                lcd.setCursor(0,1);
 if (distance < minimumRange) {
                                                                                lcd.print(String(objectTemp)+ "F ");
  lcd.clear();
                                                                                delay(5000); // Display the Temp for 5 seconds
  lcd.print("TOO CLOSE! "); // Object is very Close, less than 10 cm
                                                                             }
```

### **Experiment Outcomes**

- Prototype developed met the engineering goal of this project
- Three things tested & measured:
  - Temperature of hot water (Prototype vs. Generic Thermometer)
  - Body Temperature (Prototype vs. Generic Thermometer)
  - Room Temperature (Prototype vs. Home Thermostat)
- 5 Trials conducted for each experiment; for each --- the prototype was able to accurately measure the temperature (95% Confidence Interval; Error was less than 5%)
  - Temperature of hot water (Percent Error range between 0.02% to 0.4%)
  - Body Temperature (Percent Error range between 0.06% to 0.11%)
  - Room Temperature (Percent Error range between 0.05% to 0.11%)

### **Graphs and Tables**

| נ                           | Temperatur | e Measurem  | ent in (In <sup>o</sup> l | 5)      |         |
|-----------------------------|------------|-------------|---------------------------|---------|---------|
|                             | Trial 1    | Trial 2     | Trial 3                   | Trial 4 | Trial 5 |
|                             |            | Hot water   |                           |         |         |
| Regular Digital Thermometer | 101.6      | 101.5       | 103.2                     | 99.9    | 98.6    |
| MLX-90614 IR Sensor         | 101.62     | 101.6       | 103.41                    | 99.99   | 98.98   |
| Percent Error               | 0.02%      | 0.10%       | 0.20%                     | 0.09%   | 0.39%   |
|                             | Во         | dy Temperat | ture                      |         |         |
| Regular Digital Thermometer | 98.4       | 98.5        | 98.1                      | 98.2    | 98.8    |
| MLX-90614 IR Sensor         | 98.46      | 98.61       | 98.01                     | 98.27   | 98.9    |
| Percent Error               | 0.06%      | 0.11%       | 0.09%                     | 0.07%   | 0.10%   |
|                             | Roc        | om Tempera  | ture                      |         |         |
| Regular Digital Thermometer | 73         | 73          | 73                        | 73      | 73      |
| MLX-90614 IR Sensor         | 73.07      | 73.04       | 72.96                     | 72.92   | 73.06   |
| Percent Error               | 0.10%      | 0.05%       | 0.05%                     | 0.11%   | 0.08%   |









### **Results Analysis**

- The reason for difference in temperatures: contact vs. no contact
- For the thermostat and my device, the temperatures could be different due to environmentally impacted variations.
- For real world applications, a more robust and powerful IR sensor than MLX90614
- Temperature sensor can be affected by humidity, wind speed in the building (high-speed airwaves), extreme temperatures, and any contact with an outside substance
- HC-Sr04 ultrasonic sensor is a good sensor for measuring or detecting objects with automation at an economical price

# Why Should I Be Funded?

- If I can make a prototype that can detect the temperature of people and warn people when the temperature is classified as a fever, then this type of detection can be used to possibly prevent or reduce the spread of COVID-19 and make temperature sensing easier and more efficient. With this project, I was able to make such a prototype that did in fact work.
- Temperature sensor can be used for:
  - o An aquarium and making sure it's safe for the animals inside,
  - o Incubators and make sure it is warm enough for the premature animal or egg
  - o Manufacturing industry which can safely measure the temperature which may be too hot or cold for any contact.
  - o For my case, it can quickly and efficiently measure the temperature of people when they are doing an inperson activity or event during the COVID-19 pandemic time period.

With the Money I Get; I Will Be Able to:

- Apply for a patent
- Print Circuit Board
- Buy more powerful sensors

#### References

- https://www.arduino.cc/
- <u>Read Temperatures using I2C, HC-SR04 sensors and Arduino</u> (electroschematics.com)
- Arduino Thermometer using the IR temperature sensor (icstation.com)
- Arduino IR thermometer (educ8s.tv)
- Udemy, how to use Arduino uno board (robojax.com/L/?id=62)
- Contactless Temperature measurement (alselectro.com)
- Arduino Based Digital Thermometer (electronicshub.org)